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Abstract 

This paper provides an exact solution for the X-ray 
diffraction line shape from a bent crystal with linear 
strain. Such crystals may be found along concentra- 
tion gradients in a diffusion or ion-implanted zone, 
thin films and cold-worked materials. The solution 
simplifies into a sum of squares of two pairs of Fresnel 
integrals, which can be evaluated with very little 
computer time. The limiting cases of both pure par- 
ticle-size broadening and pure strain broadening are 
also considered. Instrumental broadening is intro- 
duced by a numerical convolution with a Pearson VII 
function. A method of determining the linear strain 
and crystal size from experimental data is discussed. 

Introduction 

One can obtain the same general kinematic form for 
the X-ray diffraction line shape from two starting 
points. For example, Wilson (1949) treated the prob- 
lem of diffraction from bent lamellae. Later, Houska 
(1970) described the d-spacing profile for a binary 
diffusion zone by a system of connecting elements 
with linearly incremented spacings. Each of these 
efforts was independent but arrives at very similar 
equations beginning from what appeared to be differ- 
ent initial problems. Houska (1970) began with a 
Fourier series for a linear change in d spacing and 
obtained the following result for a 001 reflection: 

(N~I)  
I(h3) = N3 C, exp (27rinh3) 

--(N3--1 ) 

C, = sin ~[(Ad/(d))l]n[1-(lnl/N3)]/7r(Ad/(d))ln. 
(1) 

The various quantities are h3 = 2(d)sin 0/A with (d) 
determined from the 0o value at the midpoint of a 
first-order symmetrical intensity distribution (h3 = 1) 
using X-rays of wavelength A. Also, Ad represents 
the full change in d spacing between two extreme 
ends of a stack of N3 atomic planes and n refers to 
nth-neighbor pairs of planes. 

Equation (1) can also be written as an integral by 
making the substitutions 

I~=n/N3, s=(Aa/(a))IN3 and h°=N3(h3-1). 
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An integral form was used by Wilson (1949) and is 
given by 

1 

I(h°)/2N2= I sin ~rs/z(1-/Z)cos2~r/xhOd/z. (2) 
7rs/z 

o 

Wilson related s to the bending radius and elastic 
constants but did not give an explicit expression for 
the line shape. An examination of the line profile 
described by (1) requires a time-consuming synthesis 
of a Fourier series. Houska (1978) obtained an 
approximation for the line shape, which is based upon 
(2), that is valid only for small values of s. 

The parameter s is related to the bending radius R 
by 

s=(N2(d)/R)ll(q2- vp2)/p I, (2a) 

where v is Poisson's ratio, p and q are the direction 
cosines of the reflecting planes with respect to the x 
and y axes. Also, z is parallel to the reflection planes 
and the axis of bending, x is perpendicular to the 
bent lamella and y is perpendicular to x and z. 
Equations (1) and (2) are valid irrespective of whether 
the crystal is bent concave or convex. 

From the experimental results of White (1950) 
using 500 lxm quartz crystals and Mo radiation, it can 
be inferred that when the absolute value of the bend- 
ing radius is less than 1 m or Ad/(d) is greater than 
5 × 10 - 4  kinematic scattering theory is valid to better 
than 5%. For most measurements with a conventional 
diffractometer, one normally satisfies the conditions 
required for kinematic theory to be applicable. 

If a double-crystal spectrometer is used, the overall 
sample broadening should be at least a factor of ten 
greater than the natural width of the undeformed 
crystal. 

This paper provides an exact kinematic solution 
that simplifies into two pairs of Fresnel integrals, 
which was not given in the earlier work. The Fresnel 
integrals are approximated with an error ---0.2% and 
require only a small number of well behaved terms 
that may be evaluated with very little computer time. 
Instrumental broadening is introduced by a numerical 
convolution with a Pearson VII function. An estimate 
of Ad/(d> (or bending radius) and N3 can be made 
from the width of the diffraction peak and the number 
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of major oscillations found within this region. It is 
possible to refine these estimates further by a least- 
squares fitting of the convoluted function with the 
experimental profiles. 

Theory 
Equation (2) may be written as 

1 

I ( h ° ) / E N  2= - ( 2 / s )  ! h~ ° sin [ 7rs/z (1 --/z )] 

xsin 21r/zh ° d/x dh ° 

o r  

1 

I ( h ° ) / E N 2 = ( 1 / s )  ! ~h~ {cos [~s l~2-2~' (s /2+ h~)/~] 

- c o s  [~rs~2-2~r(s/2 - h~)~]} dh3 ° d~. 

(3) 
This is simplified by reversing the order of integration 
and making use of the tabulated integral (Abramowitz 
& Stegun, 1964) 

COS ( ax 2 + 2 bx + c) dx 

= (~r/2a)-l/2{cos [(b =- ac)a]C[(2/a~r) 1/2(ax + b)] 

+sin  [(b 2 -  ac)/ a]S[(2/  a~)l/2(ax + b)]}. 

The Fresnel functions are defined by 

-i C ( x ) -  cos (7rt2/2) dt 
0 

-i S ( x ) -  sin ('n't2/2) dt 
0 

C(-x)=-C(x); S(-x)=-S(x). 

Combining terms and inserting limits, we get 

1 

j cos [Trstz2-27r(s/2 + h°)/z] d/z 
0 

= (2s)-'/2(cos [( ~r/s)(s/2 + h°) 2 ] 

x { C[ (2 / s )1 /2 ( s /2 -  h°)] 

+ C[(2 /s ) ' /2 (s /2  + h°)]} 

+ sin [ (or /s)(s /2  + h°) 2] 

× {s[(2/s)'/2(s/2 - h°)] 
+ S[(2 /s ) ' /2(s /2  + h3°)]}). 

The second integral in (3) is obtained by making a 
sign change on the variable h °. When both are com- 
bined, we obtain 

P ( h ° ) / 2 N  2 

= s-31=2-'12 ~h? [{COS [( 'n ' /s)(s/2+ h°) 2] 

- c o s  [( ~ ' / s ) ( s / 2 -  h°)Z]}{ C[(2 /s ) ' /2 (s /2  - h°)] 

+ C[(2 /s ) ' /2 (s /2  + h°)]} 

+ {sin [ (Tr/s)(s/2 + h°) 2] 

- s i n  [ ( o / s ) ( s / 2 -  h°)2]} 

× {S[(2/s) ' /Z(s/2 - h°)] 

+ S[(2 /s ) ' /2(s /2  + h°)]}] dh °. (4) 

To integrate over h °, note that 

d{ C[(2/  s)l/2(s/2~: h°)]}/ dh ° 

= ~:(2/s) '/2 cos [(~r/s)(s/2:t: h°) 2] 

d{S[(2/s)~/2(s/2:t: h°)]}/dh ° 

= ~(2 /s )  1/2 sin [(Tr/s)(s/2~: h°)2]. 

This simplifies to 

P( h °) = ( N2/2s)({  C [ ( 2 / s ) ' / 2 ( s / 2 -  h3°)] 

+ C[(2/s)a/2(s/2 + h°)]} 2 

+ {S[(2/s) ' /2(s /2 - h°)] 

+ S[(2/s) ' /E(s /2+ h°)]}2), (5) 

which is constructed from the pair of functions illus- 
trated in Fig. 1. The Fresnel integrals S(x)  and C(x)  
are readily evaluated using the following rational 
approximation (Abramowitz & Stegun, 1964) 

C ( X )  =½+[(1 + 0.926X)/(2 + 1.792X 

+ 3.104X2)] sin (Tr/2)X 2 

- [2 + 4.142X + 3"492X 2 

+ 6"670X3] -1 cos ( I r /2)X 2, 

c ( - x )  = - c ( x ) ;  

$ ( X )  = ½ -  [(1 + 0 .926X)/ (2+ 1-792X 

+3.104X2)] cos (~r/2)X 2 

- [2 + 4.142X + 3"492X = 

+6"670X3] -~ sin (Tr/2)X 2, 

s ( - x )  = - s ( x ) .  

o v.- 
x 

C(x) 

~ 8"o l / - , ~ s ( ~ l _  

Fig. 1. Illustration of Fresnel cosine, C(x), and sine, S(x), func- 
t / : ,  t / 2  o tions for +x spaces. Since x=(s/2) ±(2/s) h3, the + sign 

causes x to move from (s/2) 1/2 toward the +x axis as h ° increases 
from zero while the - sign causes x to move toward the -x 
direction. Like pairs are added, squared and combined according 
to (5) to obtain P(h°). 
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In the case of a bent lamella, the parameter s is 
inversely proportional to R. As the bend radius goes 
to infinity, the X-ray broadening from the lamella 
should tend towards pure particle-size broadening 
[P(h~)/N~=sin 2 ~'h°/(1rh~)2]. Mathematically, we 
can illustrate this fact by taking the limit of (5) as s ~ 0, 

lim P(h°)/ N 2 
$-'*0 

= lim ( 1/2s)({ C[(2/s)W2(s/2 + h°)] 
s--*O 

+ C[ (2 /s )1 /2 (s /2  - h] ) ] }  2 

+ {S[(2/s) ' /2(s /2 + h°)] 

+ S[(2/s)a/2(s/2 - h°)]}2). (6) 

As s ~ 0, the arguments of the Fresnel integrals in (6) 
tend towards infinity. For the argument X > 5, the 
sine and cosine Fresnel integrals can be approximated 
as (Abramowitz & Stegun, 1964) 

c (x )  
s(x)  

= 0"5 + (0"3183099 

-O'0968/x4) sin(2x2)/Xcos 

-(0"10132-0"154/x4) C°S(2x2)/Xasln" 

+e(X),  e ( X ) < 3 x 1 0  -7. 

As X-~ o0, oniy the first two terms in the asymptotic 
expansion for S(X) and C(X) need be retained, 
since all other terms are negligible in comparison. 
Therefore, as X-~ o0, 

C(X)=o'5+O'3183099sin(2x2)/X's(x) cos (7) 

Substituting (7) in (6), we get 

lim P(h°)/ N] 
S-~0 

= lim [(0.3183099)2/4] 
$-->0 

x ({sin [ (~r/s)(h ° + s/2)2]/(h ° + s/2) 

- s i n  [ ( I t / s ) (h  ° -  s/2)2]/(h ° -  s/2)} 2 

+ {cos [ (~1 s)(h ° -  s/2)2]/(h ° -  sl 2) 

-cos[(~/s)(h°+s/2)2]/(h°3+s/2)}2). (8) 

Expanding (Tr/s)(h°+s/2) 2 as (~/s){[(h°)2+ 
s2/4]+h°s} and substituting appropriate trigono- 
metric identities for sin ( A ± B ) ,  cos (A±B)  in (8), 
one obtains 

lim P(h°)/ N ] 
S ~ 0  

= lim [(0.3183099)2/4] 
$--~0 

x {[(2h°{cos (.~r/s)[(h°)2+ s2/4] sin 1rh °} 

- s{sin (~ / s ) [ (h° )  2 + s2/4] cos ~h°}) 

× [ (h 0)2_ s2/4) ]-,]2 

+ [(2h°{sin (~r/s)[(h°) 2 + s2/4] sin 7rh °} 

+ s{cos ('n'/s)[(h°) 2 + s2/4] cos 7rh°}) 

x [ (h 0)2 _ s2/4]-,]2}. 

Simplifying and taking the limit as s-~ 0, we find that 

lira P(h°)/N2 = sin 2 zth°/(zth°) 2, (9) 
s---~ 0 

where the constant, 0.3183099, is identified as 1/~r. 
This well known result is illustrated in Fig. 2(a). The 
limit s ~ 0 can be realized in two ways, either by 
letting Ad/d -~ O, or by letting N 3 --> 0. 

For a second limit, the column height N3 is made 
large. 

lim P(h°)/N 2 
N3-~oo 

= lim [1/2N3(aa/(d>)I] 
N3-~oo 

x t ( C { t 2 / N 3 ( a d / ( d ) ) l ]  '/2 

x [N3h3+ N3(Ad/(d))I/2]} 

+ C{[2 /N3(Aa/ (a ) ) I ]  '/2 

x[N3(Ad/(d))I/2 - N3 hal}) 2 

+ (S{[2/N3(Ad / ( d))l] 1/2 

x [N3h3+ N3(ad/(d>)l/2]} 
+ S{[2/N3(Ad/(d))I] '/2 

x[  N3(Ad/(d))I/2- N3 h3]})2]. 

The results of the calculation are as follows: 

P(ha)/N 2= 1/N3(Ad/(d))l, Ih31<l+(Ad/2(d) ) l  

> 1-(Ad/E(d>)l 

=0,  Ih31> l + ( A d / E ( d ) ) l  

<I-(Aa/2(a))I ,  (10) 

E 

0-5 1.0 1"5 2'-0 2 ; ~ "  5 3:0 3"5 "4:0 
(h~- I )  × lO 2 

Fig. 2. Illustration of extreme and transitional X-ray diffraction 
line shapes from a bent crystal in h 3 space. Values of s are 0.5, 
6, 5000, which correspond to N 3 values of (a) 50, (b) 500 and 
(c) 500 000. All are fixed at Ad/(d)= 0.01. 



516 X-RAY DIFFRACTION LINE SHAPES 

which describes the rectangular function illustrated 
in Fig. 2(c). 

The Pearson VII (PVII)  function provides an 
excellent description of instrumental broadening 
when a conventional diffractometer is used (Hall, 
Veeraraghaven, Ruben & Winchell, 1977; Naidu & 
Houska, 1982). Consequently, a measured curve is 
obtained by convoluting (5) with 

Y =  Yo[l+(h3-1)2/ma2] -", (11) 

where 

Yo=(Trm)-l/2a-' r(m)/r(m-½). 
Note that rn alters the shape from a Cauchy (m = 1) 
to a Gaussian (m-> 20) and a largely determines the 
peak width. Both m and a are determined by least- 
squares fitting the P VII to the experimentally deter- 
mined instrumental function (Naidu & Houska, 
1982). Once these are known, one must carry out the 
convolution using a nine-point Gauss-Legendre 
quadrature, i.e. 

9 

Pro(h°) = Y0 ~ W~[1 +(bz,)2/maZ]-mp(h~-bz,). 
i = 1  

(12) 

This is carded out in h ° space (Houska & Smith, 
1981). 

Discussion 

Fig. 2 illustrates extreme variations of line shapes 
using a fixed Ad/(d)=O.O1 and N3 =50, 500 and 

500 000. In the first case, the profile shape is almost 
pure particle-size broadening and, in the last case, it 
tends to the limit of a simple square shape or pure 
strain broadening as required by (10). 

The transition from pure particle-size broadening 
to pure strain broadening occurs in a complicated 
way. An examination of the half-space plot of Fig. 
2(b) illustrates a large positive oscillation about h 3 = 

0. This example is based upon an s value that locates 
the peak origin at x=31/2 in Fig. 1. However, a 
minimum in the intensity profile can be expected if 
the value of x with h ° = 0 is near the first minimum 
of the Fresnel functions. When the Fresnel functions 
are introduced into (5) a small increase in Ih31>0 
results in an increase in P(h °) until x = l . 1 5  is 
reached. The latter locates a pair of symmetrical peaks 
with only one shown in the half space of Fig. 2. If 
the origin is relocated within the range 2.12_<x_< 
2.55, we now find a peak a t  h 3 = 0 in addition to the 
symmetrical pair already described. From these 
examples, we can generalize and state that if x(h ° = O) 
is located near a pair of maxima (Fig. 1), a peak will 
be found at h 3 = 0. Likewise, a minimum will be found 
a t  h 3 = 0 when x is located near a minimum and an 
even number of pronounced oscillations will be 
observed in the full h3 space. 

The maxima and minima of the intensity can be 
obtained more generally by taking the derivatives of 
(4) (or the integrand) and setting this equal to zero. 

&. 

5 
~ '  ~ ° 

=?. . 
0:5 2:5 

- ~ 0:5 2'.5 t t )  

6" s =0.10 

t~. LA_  

o 0:5 1~0 1"5 2"0 2~5 

(h3-1) x lO 2 

Fig. 3. Profile shapes in reciprocal space (h3) for s=0-10,  14.9, 
30.9 and 46.9, which correspond to ad/(d)=O.O001, 0.0149, 
0.0309 and 0.0469. All are fixed at N 3 = 1000. 

&" s =46.9 

- - /  ° t  04 2: 
o /  ,=1,.9 

0.4 0.8 1.2 1.6 2.0 

(h3-/)  x 102 

2-0 

2:0 

Fig. 4. Profile shapes in reciprocal space (h3) for s=0-10,  14.9, 
30.9 and 46-9, which correspond to N3 = 100, 1490, 3090 and 
4690. All are fixed at Ad/(d)=O.O1 except for s = 0 . 1 0  where 
zla/(d) = 0.001. 
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Table 1. Ranges in s corresponding to the number of 
major oscillations 

Number of pronounced 
s oscillations 

0-5 1 
5-9 2 
9-13 3 

4n - 3-4n + 1 n 

After some simplifications, one obtains the following 
two solutions 

tan (Tr/s)[s2/4+(h°) 2] 
8 [ ( 2 / S ) 1 / 2 ( S / 2  "~- h°)]-3 t- S [ ( 2 / s ) 1 / 2 ( s / 2  - h°) ]  

C [ ( 2 / s ) 1 / 2 ( s / 2  -]- h°) ]  -3 t- C [ ( 2 / s ) 1 / 2 ( s / 2  - h°) ]  ' 

(13) 

h ° = ±integer. 

Figs. 3 and 4 give the profile shape v e r s u s  h 3 for s 
values of 0.10, 14.9, 30.9 and 46-9 (all locate 
minimum positions in Fig. 1). In Fig. 3, s was 
increased by fixing N3 at 1000 and increasing Ad/(d). 
The number of oscillations is seen to increase from 
0 to 6, in steps of 2. Note that the width of the peak 
increases with increasing Ad/(d). As expected, the 
number of oscillations in the half space with s --- 14.9 
is equal to the number of pairs of minima (sine, 
cosine) in the Fresnel functions between x = 0 and 
x=(s/2)  1/2. In Fig. 4, s was increased by fixing 
Ad/(d) at 0.01 and increasing N3. In this case, the 
width of the peak is a constant, whereas the number 
of oscillations increases. 

It becomes evident from these results that approxi- 
mate values of dd/(d) and N 3 c a n  be determined 

very simply. If s > 4, then the ratio of the intensities 
at h°=+(s/2)[ha=±½(Ad/(d))l] to that at h °= 
0(h 3 - l) is approximately equal to one-fourth. Con- 
sequently, the width at one-fourth the intensity of the 
peak center can be used to estimate Ad/(d>. Similarly, 
the number of pronounced oscillations in the full 
X-ray profile is given by int [ ( s+3) /4 ]  where int 
denotes 'integer part of'. From the preceding dis- 
cussion, we have found that the peak width and the 
number of major oscillations can be used to estimate 
Ad/(d) and s. The latter being known N 3 c a n  be 
calculated. Table 1 gives various ranges in s corre- 
sponding to the number of major oscillations. This 
procedure is only semi-quantitative and is suggested 
only for a quick interpretation of the intensity data. 
The most accurate determination of the parameters 
is obtained by least-squares fitting the experimental 
profile to (12). This may be carded out by beginning 
with estimates of Ad/(d) and N3. 

The authors are grateful to the National Science 
Foundation (Grant No. DMR-8000933) for funding 
this research. 
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Abstract 

The problems of making calculations using the total 
phonon scattering cross section in the harmonic 
approximation are examined and it is found that the 
method of Reid & Smith [J. Phys. C (1970), 3 1513- 
1526] can be extended to cope with any material with 
a modest number of atoms per unit cell. Complex 
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eigenvectors and complex scattering factors may be 
handled without approximations. The method is used 
to evaluate the multiphonon scattering (and one- 
phonon scattering) for a number of cubic zincblende 
structure compounds including GaAs, CdTe, CuI and 
SiC, taking eigendata from good lattice dynamical 
models. The results illustrate a discussion of the 
typical behaviour of multiphonon scattering as a 
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